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1 Introduction

So far we have derived a set of first order conditions for the Calvo model, and after linearize them, we
arrived to a system of three equations. The Euler equation, the NK Phillips Curve, and a monetary
policy rule. How much we lose by linearizing? How does the steady state of this model looks like?

2 The Calvo Model

I'll start by writing some optimality conditions for this model. You should know by now how to derive
them, if you don’t for a particular one, make sure to review the material.
I’'m going to assume the following utility function:
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Now we are going to transform this system in terms of inflation rates, as opposed to price indexes.
Start by defining;:
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Now using (16), (14) and (6) and dividing over P;_; on both sides we get:
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So the system is given by:
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Let’s look how the steady state solution looks like. I'm going to do it for an inflation target IT = 1.
You’ll do the more involved case in the homework.
From the Euler Equation:
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From the definition of inflation as a function of target inflation:
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From the evolution of dispersion:
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With the equilibrium conditions and the steady state, we can ask the computer to solve the model.



