Recitation 3 The non-linear Calvo Model

Juan Herreño

February 12, 2018

1 Introduction

So far we have derived a set of first order conditions for the Calvo model, and after linearize them, we arrived to a system of three equations. The Euler equation, the NK Phillips Curve, and a monetary policy rule. How much we lose by linearizing? How does the steady state of this model looks like?

2 The Calvo Model

I'll start by writing some optimality conditions for this model. You should know by now how to derive them, if you don't for a particular one, make sure to review the material.

I'm going to assume the following utility function:

$$U(C_t, N_t) = \frac{C_t^{1-\gamma} - 1}{1-\gamma} - \frac{N_t^{1+\psi}}{\psi}$$
 (1)

$$N_t^{\psi} = \frac{W_t Y_t^{-\gamma}}{P_t} : \text{Labor supply}$$
 (2)

$$Y_t^{-\gamma} = \beta(1+i_t)\mathbb{E}_t \left[Y_{t+1}^{1-\gamma} \Pi_{t+1}^{-1} \right] : \text{Euler Equation}$$
 (3)

$$N_t = \frac{Y_t D_t}{A_t}$$
: Aggregate Production Function (4)

$$D_t = \int_0^1 \left(\frac{P_{it}}{P_t}\right)^{-\sigma} di : \text{Price Dispersion}$$
 (5)

$$P_t^* = \frac{X_{1,t}}{X_{2,t}} : \text{Target Price} \tag{6}$$

$$X_{1,t} = \frac{\sigma}{\sigma - 1} Y_t^{1-\gamma} P_t^{\sigma} \frac{W_t}{P_t A_t} + \beta \theta \mathbb{E}_t \left[X_{1,t+1} \right]$$
 (7)

$$X_{2,t} = Y_t^{1-\gamma} P_t^{\sigma-1} + \beta \theta \mathbb{E}_t [X_{2,t+1}]$$
 (8)

$$Y_t^n = \left(\frac{\sigma}{\sigma - 1} A_t^{\psi + 1}\right)^{\frac{1}{\psi + \gamma}} : \text{Natural Output}$$
 (9)

$$\frac{W_t}{P_t} = Y_t^{\psi + \gamma} D_t^{\psi} A_t^{-\psi} : \text{Output}$$
 (10)

$$\tilde{Y}_t = \frac{Y_t}{Y_t^n}$$
: Output Gap (11)

$$P_t^{1-\sigma} = (1-\theta)(P_t^*)^{1-\sigma} + \theta(P_{t-1})^{1-\sigma}$$
(12)

$$(1+i_t) = \beta^{-1} \bar{\Pi} \left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\phi_{\pi}} e^{v_t} : \text{Monetary Policy Rule}$$
 (13)

Now we are going to transform this system in terms of inflation rates, as opposed to price indexes. Start by defining:

$$K_{1,t} \equiv \frac{X_{1,t}}{P_t^{\sigma}} = \frac{\sigma}{\sigma - 1} Y_t^{1-\gamma} \frac{W_t}{P_t A_t} + \beta \theta \mathbb{E}_t \left[K_{1,t+1} \Pi_{t+1}^{\sigma} \right]$$

$$\tag{14}$$

$$K_{1,t} \equiv \frac{X_{1,t}}{P_t^{\sigma}} = Y_t^{1-\gamma} \tilde{Y}_t^{\gamma+\psi} D_t^{\psi} + \beta \theta \mathbb{E}_t \left[K_{1,t+1} \Pi_{t+1}^{\sigma} \right]$$

$$\tag{15}$$

Where I divided (10) by (9) and replaced it by $\frac{W_t \sigma}{(\sigma - 1) P_t A_t}$

$$K_{2,t} \equiv \frac{X_{1,t}}{P_t^{\sigma-1}} = Y_t^{1-\gamma} + \beta \theta \mathbb{E}_t \left[K_{2,t+1} \Pi_{t+1}^{\sigma-1} \right]$$
 (16)

Now using (16), (14) and (6) and dividing over P_{t-1} on both sides we get:

$$\Pi_t^* = \Pi_t \frac{K_{1,t}}{K_{2,t}} \tag{17}$$

Now take equation (5):

$$D_t = \int_0^{1-\theta} \left(\frac{P_t^*}{P_t}\right)^{-\sigma} dj + \int_{1-\theta}^1 \left(\frac{P_{i,t-1}}{P_t}\right)^{-\sigma} dj$$

$$D_t = (1 - \theta) \left(\Pi_t^*\right)^{-\sigma} \Pi_t^{\sigma} + \theta D_{t-1} \Pi_t^{\sigma}$$
(18)

Now use equation (12):

$$\Pi_t^{1-\sigma} = \theta + (1-\theta)(\Pi_t^*)^{1-\sigma}$$
 (19)

So the system is given by:

$$\Pi_t^{1-\sigma} = \theta + (1-\theta)(\Pi_t^*)^{1-\sigma}$$

$$D_t = (1-\theta)(\Pi_t^*)^{-\sigma} \Pi_t^{\sigma} + \theta D_{t-1} \Pi_t^{\sigma}$$

$$\Pi_t^* = \Pi_t \frac{K_{1,t}}{K_{2,t}}$$

$$K_{1,t} \equiv \frac{X_{1,t}}{P_t^{\sigma}} = Y_t^{1-\gamma} \tilde{Y}_t^{\gamma+\psi} D_t^{\psi} + \beta \theta \mathbb{E}_t \left[K_{1,t+1} \Pi_{t+1}^{\sigma} \right]$$

$$K_{2,t} \equiv \frac{X_{1,t}}{P_t^{\sigma-1}} = Y_t^{1-\gamma} + \beta \theta \mathbb{E}_t \left[K_{2,t+1} \Pi_{t+1}^{\sigma-1} \right]$$

$$\tilde{Y}_t = \frac{Y_t}{Y_t^n}$$

$$Y_t^n = \left(\frac{\sigma}{\sigma - 1} A_t^{\psi+1} \right)^{\frac{1}{\psi+\gamma}}$$

$$Y_t^{-\gamma} = \beta (1+i_t) \mathbb{E}_t \left[Y_{t+1}^{1-\gamma} \Pi_{t+1}^{-1} \right]$$

$$(1+i_t) = \beta^{-1} \bar{\Pi} \left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\phi_{\pi}} e^{v_t}$$

$$\log A_t = \rho \log A_{t-1} + u_t$$

Let's look how the steady state solution looks like. I'm going to do it for an inflation target $\bar{\Pi} = 1$. You'll do the more involved case in the homework.

From the Euler Equation:

$$\Pi = \beta(1+i)$$

and from the monetary policy rule:

$$(1+i) = \beta^{-1} \Pi^{\phi_{\Pi}}$$

$$\Pi = \Pi^{\phi_{\Pi}}$$

$$\Pi = 1$$

From the definition of inflation as a function of target inflation:

$$1 = \theta + (1 - \theta)(\Pi^*)^{1 - \sigma}$$
$$1 - \theta = (1 - \theta)(\Pi^*)^{1 - \sigma}$$
$$\Pi^* = 1$$

From the evolution of dispersion:

$$D = (1 - \theta) (\Pi^*)^{-\sigma} \Pi^{\sigma} + \theta D \Pi^{\sigma}$$
$$D = (\Pi^*)^{-\sigma}$$
$$D = 1$$

Plugging in the efinition of K_1 and K_2

$$K_1 = \frac{Y^{1-\gamma} \tilde{Y}^{\gamma+\psi} D^{\psi}}{1-\beta \theta}$$
$$K_2 = \frac{Y^{1-\gamma}}{1-\beta \theta}$$

Therefore

$$\Pi^* = \Pi \frac{K_1}{K_2}$$

$$1 = \tilde{Y}^{\gamma + \psi} D^{\psi}$$

$$\tilde{Y} = 1$$

With the equilibrium conditions and the steady state, we can ask the computer to solve the model.